Es la suma total de todas las reacciones catalizadas por enzimas.
El metabolismo es el conjunto de reacciones y procesos físico-químicos que ocurren en una célula. Estos complejos procesos interrelacionados son la base de la vida a nivel molecular, y permiten las diversas actividades de las células: crecer, reproducirse, mantener sus estructuras, responder a estímulos, etc.
FASES DEL METABOLISMO
REACCIONES CATABOLICAS: DEGRADAN
Es el rompimiento de las moleculas grandes a pequeñas mas la liberacion de energia.
El catabolismo es la degradación oxidativa de moléculas nutrientes complejas (carbohidratos, lípidos, proteínas) obtenida del ambiente o de las reservas celulares. La rotura de estas moléculas en el metabolismo resulta en la formación de moléculas más sencillas tales como el lactato, el etanol, el CO2, la urea, el amoniaco, etc. Las reacciones catabólicas son normalmente exoergónicas y normalmente la energía liberada se recoge en forma de ATP. Ya que también es oxidación, otros tipos de moléculas donde se conserva la energía son moléculas reducidas, es decir, NADH o NADPH. Estas moléculas tienen dos funciones distintas. Mientras que el NAD+ participa en reacciones catabólicas, el NADP+ participa en reacciones anabólicas. La energía del NADH está acoplada a la formación de ATP en células aeróbicas, mientras que el NADPH es la fuente de poder reductor para las reacciones biosintéticas.
El catabolismo es el conjunto de procesos metabólicos que liberan energía. Estos incluyen degradación y oxidación de moléculas de alimento, así como reacciones que retienen la energía del Sol. El propósito de estás reacciones catabólicas es proveer energía, poder reductor y componentes necesitados por reacciones anabólicas. La naturaleza de estas reacciones catabólicas difiere de organismo en organismo. Sin embargo, estas diferentes formas de catabolismo dependen de reacciones de reducción-oxidación que involucran transferencia de electrones de moléculas donantes (como las moléculas orgánicas, agua, amoníaco, sulfuro de hidrógeno e iones ferrosos), a aceptores de dichos electrones como el oxígeno, el nitrato o el sulfato.En los animales, estas reacciones conllevan la degradación de moléculas orgánicas complejas a otras más simples, como dióxido de carbono y agua. En organismos fotosintéticos como plantas y cianobacteria, estas transferencias de electrones no liberan energía, pero son usadas como un medio para almacenar energía solar. El conjunto de reacciones catabólicas más común en animales puede ser separado en tres etapas distintas. En la primera, moléculas orgánicas grandes como las proteínas, polisacáridos o lípidos son digeridos en componentes más pequeños fuera de las células. Luego, estas moléculas pequeñas son llevadas a las células y convertidas en moléculas aún más pequeñas, generalmente coenzima A, que libera energía. Finalmente, el grupo acetil en la molécula de acetil CoA es oxidado a agua y dióxido de carbono, liberando energía que se retiene al reducir la coenzima nicotinamida adenina dinucleótido (NAD+) en NADH.
REACCIONES ANABOLICAS: Sintetizan
Construccion de moleculas grandes a partir de moleculas pequeñas
Las reacciones anabólicas, en cambio, utilizan esta energía liberada para recomponer enlaces químicos y construir componentes de las células como lo son las proteínas y los ácidos nucleicos. El catabolismo y el anabolismo son procesos acoplados que hacen al metabolismo en conjunto, puesto que cada uno depende del otro.
El anabolismo es el conjunto de procesos metabólicos constructivos en donde la energía liberada por el catabolismo es utilizada para sintetizar moléculas complejas. En general, las moléculas complejas que dan lugar a estructuras celulares son construidas a partir de precursores simples. El anabolismo involucra tres facetas. Primero, la producción de precursores como aminoácidos, monosacáridos, isoprenoides y nucleótidos; segundo, su activación en reactivos usando energía del ATP; y tercero, el conjunto de estos precursores en moléculas más complejas como proteínas, polisacáridos, lípidos y ácidos nucleicos.Los organismos difieren en cuántas moléculas pueden sintetizar por sí mismos en sus células. Los organismos autótrofos, como las plantas, pueden construir moléculas orgánicas complejas y proteínas por sí mismos a partir moléculas simples como dióxido de carbono y agua. Los organismos heterótrofos, en cambio, requieren de una fuente de sustancias más complejas, como monosacáridos y aminoácidos, para producir estas moléculas complejas. Los organismos pueden ser clasificados por su fuente de energía:Fotoautótrofos y fotoheterótrofos, que obtienen la energía del Sol. Quimioheterótrofos y quimioautótrofos, que obtienen la energía mediante reacciones oxidativas.
Son proteinas catalizadoras biologicas ya que aceleran las reacciones metabolicas.
Se pueden utilizar una y otra vez. Deben estar en pequeñas cantidades.
Usualmente estan formados por una cadena proteica, pero ademas pueden tener varias partes que no son proteinas.
En bioquímica, se llaman enzimas las sustancias de naturaleza proteica que catalizan reaccione químicas, siempre que sea termodinámicamente posible (si bien no pueden hacer que el proceso sea más termodinámicamente favorable). En estas reacciones, las moléculas sobre las que actúa la enzima en el comienzo del proceso son llamadas sustratos, y estas los convierten en diferentes moléculas, los productos. Casi todos los procesos en las células necesitan enzimas para que ocurran en tasas significativas. A las reacciones mediadas por enzimas se las denomina reacciones enzimáticas. Debido a que las enzimas son extremadamente selectivas con sus sustratos y su velocidad crece sólo con algunas reacciones de entre otras posibilidades, el conjunto (set) de enzimas sintetizadas en una célula determina el metabolismo que ocurre en cada célula. A su vez, esta síntesis depende de la regulación de la expresión génica. Como todos los catalizadores, las enzimas funcionan disminuyendo la energía de activación (ΔG‡) para una reacción, así se acelera substancialmente la tasa de la reacción. Las enzimas no alteran el balance energético de las reacciones en que intervienen, ni modifican, por lo tanto, el equilibrio de la reacción, pero consiguen acelerar el proceso incluso millones de veces. Una reacción que se produce bajo el control de una enzima, o de un catalizador en general, alcanza el equilibrio mucho más deprisa que la correspondiente reacción no catalizada. Al igual que ocurre con otros catalizadores, las enzimas no son consumidas por las reacciones que ellas catalizan, ni alteran su equilibrio químico. Sin embargo, las enzimas difieren de otros catalizadores por ser más específicas. Las enzimas catalizan alrededor de 4.000 reacciones bioquímicas distintas.No todas los catalizadores bioquímicos son proteínas, pues algunas moléculas de ARN son capaces de catalizar reacciones (como el fragmento 16S de los ribosomas en el que reside la actividad peptidil transferasa). La actividad de las enzimas puede ser afectada por otras moléculas. Las inhibidoras son moléculas que disminuyen la actividad de las enzimas; mientras que las activadoras son moléculas que incrementan la actividad. Asimismo, gran cantidad de enzimas requieren de cofactores para su actividad. Muchas drogas o fármacos son moléculas inhibidoras. La actividad es afectada por la temperatura, el pH, la concentración del sustrato y otros factores físicoquímicos. Algunas enzimas son usadas comercialmente, por ejemplo, en la síntesis de antibióticos. Además, algunos productos domésticos de limpieza usan enzimas para acelerar las reacciones bioquímicas.
CLASIFICACION DE LAS ENZIMAS
Oxirreductasas
Catalizan reacciones de oxidorreducción o redox. Precisan la colaboración de las coenzimas de oxidorreducción (NAD+, NADP+, FAD) que aceptan o ceden los electrones correspondientes; tras la acción catalítica, estas coenzimas quedan modificados en su grado de oxidación por lo que deben ser transformadas antes de volver a efectuar la reacción catalítica. Ejemplo: Deshidrogenasas. Transferasas
Transfieren grupos activos (obtenidos de la ruptura de ciertas moléculas) a otras sustancias receptoras. Suelen actuar en procesos de interconversión de monosacáridos, aminoácidos, etc. Ejemplos: transaminasas, quinasas. Hidrolasas
Verifican reacciones de hidrólisis con la consiguiente obtención de monómeros a partir de polímeros. Actúan en la digestión de los alimentos, previamente a otras fases de su degradación. Ejemplo: glucosidasas, lipasas Isomerasas
Actúan sobre determinadas moléculas obteniendo de ellas sus isómeros de función o de posición. Suelen actuar en procesos de interconversión. Ejemplo: epimerasas.(mutasa) Liasas
Catalizan reacciones en las que se eliminan grupos (H2O, CO2 y NH3) para formar un doble enlace o añadirse a un doble enlace, capaces de catalizar la reducción en un sustrato. En la parte de enzimas Sustrato es una molecula que sobre actua en una enzima, el sustrato se une al sitio activo de la enzima, y se forma un complejo enzima-sustrato. El sustrato por acción de la enzima es transformado en producto y es liberado del sitio activo, quedando libre para recibir otro sustrato. Ejemplos: descarboxilasas, liasas. Ligasas
Realizan la degradación o síntesis de los enlaces denominados "fuertes" mediante al acoplamiento a sustancias de alto valor energético (como el ATP). Ejemplos: sintetasas, carboxilasas. Activadores
Algunas enzimas necesitan para su actividad iones inorgánicos específicos que reciben el nombre de activadores. Los activadores que se necesitan con más frecuencia son los iones de hierro, cobre, manganeso, magnesio, cobalto y zinc. De ordinario, sólo un ion funciona con una determinada enzima, pero en ciertos casos se pueden substituir ciertos iones por otros, persistiendo una actividad enzimática satisfactoria. Inhibidores
Las moléculas que regulan la actividad enzimática inhibiendo su actividad, pueden clasificarse en reversibles e irreversibles. Las irreversibles se unen covalentemente al enzima y son útiles en farmacología (penicilina, aspirina). Las reversibles pueden clasificarse, a su vez, en competitivas y no competitivas. Las competitivas modifican la Km del enzima ya que se unen al centro activo de éste e impiden la unión con el sustrato (se necesitará más para activar los enzimas). Las no competitivas se unen a otro lugar del enzima, modificando la Vmax (velocidad en que se forma producto por unidad de tiempo) ya que al unirse, el enzima queda inactivado. Aplicaciones industriales Las enzimas son utilizadas en la industria química y en otras aplicaciones industriales en donde se requiere el uso de catalizadores muy especializados. Una de las aplicaciones industriales en las que se usan enzimas es en la industria de los detergentes biológicos, ya que estos en su mayoria contienen enzimas tales como la amilasa, la lipasa y en algunos casos la celulosa, que de acuerdo a un uso específico ayudan a eliminar la gran mayoría de manchas e inperfecciones en algunas pieles. Sin embargo, las enzimas en general están limitadas en el número de reacciones que han evolucionado a catálisis y también por su falta de estabilidad en solventes orgánicos y a altas temperaturas. Consecuentemente, la ingeniería de las proteínas es un área de investigación activa que involucra intentos de crear nuevas enzimas con novedosas propiedades, ya sea por diseño racional o por evolución in vitro.